
Lacking Labels In The Stream: Classifying
Evolving Stream Data With Few Labels

Clay Woolam, Mohammad M. Masud, and Latifur Khan

Department of Computer Science, University of Texas at Dallas
{clayw,mehedy,lkhan}@utdallas.edu

Abstract. This paper outlines a data stream classification technique
that addresses the problem of insufficient and biased labeled data. It is
practical to assume that only a small fraction of instances in the stream
are labeled. A more practical assumption would be that the labeled data
may not be independently distributed among all training documents.
How can we ensure that a good classification model would be built in
these scenarios, considering that the data stream also has evolving na-
ture? In our previous work we applied semi-supervised clustering to build
classification models using limited amount of labeled training data. How-
ever, it assumed that the data to be labeled should be chosen randomly.
In our current work, we relax this assumption, and propose a label prop-
agation framework for data streams that can build good classification
models even if the data are not labeled randomly. Comparison with state-
of-the-art stream classification techniques on synthetic and benchmark
real data proves the effectiveness of our approach.

1 Introduction
Data stream classification has gained increasing attention in recent years because
large volumes of data are being generated continuously in different domains of
knowledge. Data stream classification poses several challenges because of fun-
damental properties: infinite length and evolving nature. Stream evolution may
occur in two ways. First, a new class of data may evolve in the stream that has
not been seen before. This phenomenon will be referred to henceforth as concept-
evolution. Second, the underlying concepts of the data may change. This will be
referred to as concept-drift. Many solutions have been proposed to classify evolv-
ing data streams [1–6]. However, most of those techniques assume that as soon as
a data point (or a batch of data points) has arrived in the stream and classified
by the classifier, that data point (or the batch of data points) would be labeled
by an independent labeling mechanism (such as a human expert), and can be
used for training immediately. This is an impractical assumption, because in a
real streaming environment, it is far beyond the capability of any human expert
to label data points at the speed at which they arrive in the stream. Thus, a
more realistic assumption would be that only a fraction of the instances would
be labeled for training. This assumption was first made by us in our previous
work [7].

In the previous work, we [7] proposed a technique to train classification mod-
els with P% randomly chosen labeled data from each chunk. So, if a training data

chunk contained 100 instances, then the algorithm required only P labeled in-
stances. However, the prediction accuracy of the trained model in this technique
may vary depending on the quality of the labeled data. That is, this approach
should work better on a sample that is uniformly distributed in the feature space
rather than a biased, non-uniform sample. In our current work, we propose a
more robust technique by making no prior assumption about the uniformity of
the labeled instances. Our only requirement is that there should be some labeled
instances from each class.

Our ensemble classification technique works as follows. First, we classify the
latest (unlabeled) data chunk using the existing ensemble. Second, when P% of
instances in the data chunk have been labeled, we apply constraint-base clus-
tering to create K clusters and split them into homogeneous clusters (micro-
clusters) that contain only unlabeled instances, or only labeled instances from a
single class. We keep a summary of each micro-cluster (e.g. the centroid, num-
ber of data points etc.) as a “pseudo-point” and discard all the raw data points
in order to save memory and achieve faster running time. Finally, we apply a
label propagation technique on the pseudo-points to label the unlabeled pseudo-
points. These labeled pseudo-points act as a classification model. This new model
replaces an old model in the ensemble if necessary and the ensemble is kept up-
to-date with the current concept. We also periodically refine the existing models
to cope with stream evolution.

This paper details several contributions. First, we propose a robust stream
classification technique that works well with limited amount of labeled training
data. The accuracy of our classification technique is not dependent on the quality
of the labeled data. Second, we suggest an efficient label propagation technique
for stream data. This involves clustering training instances into pseudo-points
and applying label propagation on the pseudo-points. To the best of our knowl-
edge, no label propagation technique exists for data streams. Third, in order to
handle concept-evolution and concept-drift, we introduce pseudo-point injection
and deletion techniques and analyze their effectiveness both analytically and
empirically. Finally, we apply our technique to synthetic and real data streams
and achieve better performance than other data stream classification techniques
that use limited labeled training data.

The paper is organized as follows: section 2 discusses related works, section
3 presents an overview of the whole process, section 4 describes the training
process, section 5 discusses the ensemble technique, section 6 explains the ex-
periments and analyzes the results, and section 7 concludes with directions to
future works.
2 Related Work
Our work is closely related to both data stream classification and label propa-
gation techniques. We explore both of these methods below.

Data stream classification techniques can be divided into two major cate-
gories: single model and ensemble classification. Single model classification tech-
niques apply incremental learning so that the models can be updated as soon as
new training data arrives [8, 9]. The main limitation of these single model tech-
niques is that only the most recent data is used to update the model, and so, the

influence of historical data is quickly forgotten. Other single model approaches
like [2, 6] have been proposed to handle concept-drift efficently.

Ensemble techniques like [3–5, 10, 11] can update their models efficiently and
cope with the stream evolution effectively. We also follow an ensemble approach
that is different from most other ensemble approaches in two aspects. First, en-
semble techniques like [4, 5, 10] mainly focus on building an efficient ensemble
whereby the underlying classification technique, say decision tree, is a blackbox.
We concentrate on building an efficient learning paradigm rather than focusing
on the ensemble construction. Second, most of the previous classification tech-
niques assume that all instances in the stream will eventually be labeled and
can be used for training, but we assume that only a fraction, like 10%, will be
labeled and be available for training. In this regard, our approach is related to
our previous work [7], which will henceforth be referred as SmSCluster.

Our current approach is different from SmSCluster, the previous approach, in
several aspects. First, it was assumed in SmSCluster that the labeled instances
would be uniformly distributed, which may not be the case in a real world
scenario. We do not make any such assumption. Second, SmSCluster applied
only semi-supervised clustering to build the pseudo-points, but did not apply
cluster splitting, pseudo-point deletion, or label propagation. Finally, SmSClus-
ter applied K-Nearest Neighbor classification, whereas we apply inductive label
propagation for classification.

3 Overview of the approach

Algorithm 1 LabelStream
Input: Xn: data points in chunk Dn

K: number of pseudo-points to be created
M : current ensemble of L models {M1, ...,ML}

Output: Updated ensemble M
1. Predict the class labels of each instance in Xn with M (section 5).
/* Assuming that P% instances in Dn has now been labeled */
2. M ′ ← Train(Dn) /* Build a new model M ′ */
3. M ← Refine-Ensemble(M,M ′) (section 5.1)
4. M ← Update-Ensemble(M,M ′, Dn) (section 5.2)

Function Train(Dn) Returns Model
2.1. Set of macro-clusters,MC ← Semi-supervised-Clustering(Dn) (section 4.1)
2.2. Set of micro-clusters, µC ← Build-Micro-clusters(MC) (section 4.1)
2.3. for each micro-cluster µCi ∈ µC do pseudo-point ψi ← Summary(µCi)
2.4. M ′ ← Set of all pseudo-points ψi

2.5. M ′ ← M ′
Sn−1

t=n−r Set of all labeled pseudo-points in Chunk Dt

2.6. M ′ ← Propagate-Labels(M ′)
2.7. return M ′

Algorithm 1 summarizes the overall process. Line 2 executes the Train oper-
ation on an incoming data chunk. Training begins with a semi-supervised clus-
tering technique. The clusters are then split into pure micro-clusters in line 2.2
of the training function. Then, the summary of each micro-cluster is saved as a

pseudo-point in line 2.3. In line 2.4 and 2.4, we combine our new set of pseudo-
points with the labeled pseudo-points from the last r contiguous chunks. By a
labeled pseudo-point we mean the pseudo-points that correspond to only the
manually labeled instances. In line 2.6, a modified label propagation technique,
[12], is applied on the combined set of pseudo-points. Once we complete training
a new model, we return to the main algorithm. In line 3 and 4, the ensemble is
refined and updated. The following sections describe this process in detail.
4 Model generation
The training data is a mixture of labeled and unlabeled data. Training con-
sists of three basic steps. First, semi-supervised clustering is used to build K
clusters, denoted as macro-clusters, from the training data. Second, to build
homogeneous clusters, denoted as micro-clusters, in order to facilitate label
propagation process, and save cluster summaries as pseudo-points. Third, to
propagate labels from the labeled pseudo-points to the unlabeled pseudo-points,
a transductive label propagation algorithm, from [12], is used. The collection of
the labeled pseudo-points are used as a classification model for classifying unla-
beled data. The classification and ensemble updating process is described in the
next section, section 5.
4.1 Semi-supervised clustering
With semi-supervised clustering, clusters can be built efficiently in terms of both
running time and storage space. The label propagation algorithm takes O(n3)
time in a dataset having n instances. Although this running time is tolerable in
a static environment, it may not be practical for a streaming environment where
fast training is a critical issue. Training time is reduced by reducing the number
of instances to a constant K. This is done by partitioning the instances into
K clusters and using the cluster centroids as pseudo-points. This also reduces
memory consumption because rather than storing the raw data points, we store
the pseudo-points only. Thus, the storage requirement goes from being linear to
constant.

The semisupervised clustering objective is to minimize both cluster impurity
and intra-cluster dispersion, expressed by

OImpDisp =
K∑
i=1

(
∑

x∈Xi

||x− ui||2 +
∑

x∈Li

||x− ui||2 ∗ (|Li|)2 ∗Ginii ∗ Enti) (1)

where K is the total number of clusters, µi is the centroid of cluster i, Xi is the
set of instances belonging to cluster i, Impi is the impurity of cluster i, Li is
the set of labeled instances in cluster i, and |Li| is the corresponding cardinality,
Ginii is the Gini index of cluster i =

∑C
c=1(pic)

2, C being the total number of
classes in the dataset, and Enti is the entropy of cluster i =

∑C
c=1(−pic∗log(pic)).

This minimization problem, equation 1, is an incomplete-data problem which we
solve using the Expectation-Maximization (E-M) technique. Since we follow a
similar approach to [7], the details of these steps are omitted here.

Although most of the macro-clusters constructed in the previous step are
made as pure as possible, some of them may contain instances from a mix-
ture of classes. A completely pure macro-cluster may also contain some un-
labeled instances. So, the macro-clusters are split into micro-clusters so that

each micro-cluster contains only unlabeled instances or only labeled instances
from a single class. At this point, the reader may ask whether we could cre-
ate the pure micro-clusters in one step using K-means clustering separately for
each class and the unlabeled data in a supervised fashion, rather than creating
them in two steps, namely, semi-supervised clustering and splitting. The reason
for this two-step process is that when limited amount of labels are available,
semi-supervision is usually more useful than full supervision. It is likely that
supervised K-means would create low quality, less dense or more scattered, clus-
ters than semi-supervised clustering. So, the cluster representatives, or pseudo-
points, would have less precision in representing the corresponding data points.
As a result, the label-propagation may also perform poorly.

Building micro-clusters is done as follows. SupposeMCi is a macro-cluster. In
the first case, MCi contains only unlabeled instances or only labeled instances
from a single class. It is assumed to be a valid micro-cluster and no splitting
is necessary. In the second case, MCi contains both labeled and unlabeled in-
stances, and/or labeled instances from more than one classes. For each class,
we create a micro-cluster with the instances of that class. If MCi contains un-
labeled instances, then another micro-cluster is created with those unlabeled
instances (see figures 1(a) and 1(b)). So, each micro-cluster contains only unla-
beled instances, or labeled instances from a single class. If the total number of
macro-clusters is K and the total number of classes is C, then the total number
of micro-clusters will be at most C ∗K=K̂, which is also a constant. However,
in practice, we find that K̂ is almost the same as K. This is because in practice
most of the macro-clusters are purely homogeneous and need not be split.

Splitting unlabeled micro-clusters: The unlabeled micro-clusters may be
further split into smaller micro-clusters. This is because, if the instances of an
unlabeled micro-cluster actually come from different classes, then this micro-
cluster will have a negative effect on the label propagation (see the analysis
in section 5.3). However, there is no way to accurately know the real labels of
the unlabeled instances. So, we use the predicted labels of those instances that
were obtained when the instances were classified using the ensemble. Therefore,
the unlabeled micro-clusters are split into purer clusters based on the predicted
labels of the unlabeled instances (see figure 1).

Fig. 1. Illustrating micro-cluster creation. ‘+’ and ‘-’ represent labeled data points and
‘x’ represents unlabeled data points. (a) Macro-clusters created using the constraint-
based clustering. (b) Macro-clusters are split into micro-clusters. (c) Unlabeled micro-
clusters are further split based on the predicted labels of the data points.

Creating pseudo-points: The centroid of each micro-cluster is computed
and a summary of each micro-cluster is saved as a pseudo-point. This summary
contains three fields: i) the centroid, ii) the weight, i.e., the total number of
instances in the micro-cluster, and iii) the assigned class label. After saving the
pseudo-point, we discard all the raw instances from the main memory. A pseudo-
point will be referred to henceforth with the symbol ψ. The centroid of ψ will be
denoted with C(ψ) and the weight of ψ will be denoted with W(ψ). We consider
a pseudo-point as labeled if all the data points in the micro-cluster corresponding
to the pseudo-point are labeled.
5 Ensemble classification
An unlabeled test data may be classified using the transductive label propagation
technique by adding the point to an existing model and rerunning the entire label
propagation algorithm. Unfortunately, running the transduction for every test
point would be very expensive. The efficient alternative is to use the inductive
label propagation technique from [12], ŷ =

P
j WΨ (x,ψj)ŷjP
j WΨ (x,ψj)+ε

, x is the test point,
ψj ’s are the pseudo-points in the model, W Ψ is the function that generated the
matrix W on Ψ = {ψ1, ..., ψK̂}, and ε is a small smoothing constant to prevent
the denominator from being zero. The complexity of this is linear with respect
to the number of pseudo-points in a model, K̂.
5.1 Ensemble refinement
We may occasionally need to refine the exiting models in the ensemble if a
new class arrives due to concept-evolution in the stream or old models become
outdated due to concept-drift.

Pseudo-point injection: This is required when a new class arrives in the
stream. We call a class ĉ as a “new” class if no existing model in the ensemble
contains any pseudo-point with class label ĉ, but M ′, the new model built from
the latest training data, contains some pseudo-points with that class label. Re-
finement is done by injecting pseudo-points of class ĉ into the existing models.
When a pseudo-point is injected in a model Mi ∈M , two existing pseudo-points
in Mi are merged to ensure that the total number of pseudo-points remains con-
stant. The closest pair of pseudo-points having the same class labels are chosen
for merging.

Pseudo-point deletion: In order to improve the classification accuracy of
a classifier Mi, we occasionally remove pseudo-points that may have negative
effect on the classification accuracy. For each pseudo-point ψ ∈Mi, we maintain
the accuracy of ψ as A(ψ). A(ψ) is the percentage of manually labeled instances
for which ψ is a nearest neighbor and whose class label is the same as that of
ψ. So, if for any labeled instance x, its nearest pseudo-point ψ has a different
class label than x, then A(ψ) drops. This statistic help us to determine whether
any pseudo-point has been wrongly labeled by the label propagation or if the
pseudo-point has become outdated because of concept-drift. In general, we delete
ψ if A(ψ) drops below 70%.
5.2 Ensemble updating
Our ensemble classifier M consists of L classification models = {M1, ...,ML}.
The training algorithm described in the previous section (section 4) builds one

such model M ′ from the training data. Each of the L+1 models, M ′ and L
models in the ensemble, are evaluated using the labeled instances of the training
data and the best L of them based on accuracy are chosen for the new ensemble.
The worst model is discarded. The ensemble is always kept up to date with the
most recently trained model. This is an efficient way to handle concept-drift.
5.3 Error reduction analysis for cluster splitting and removal
First, we introduce the notion of swing voter for a test instance x. Let the pseudo-
point ψi be the swing voter for x if the label of ψi determines the predicted label
of x according to the inductive equation. Note that such a voter must exist for
any test instance x. Also, WΨ (x, ψi) is the weight from inductive label propaga-
tion. Usually, the ψi that have the highest WΨ (x, ψi) should be the swing voter
for x. In other words, the nearest pseudo-point to x is most likely be its swing
voter. Let the probability that ψi is a swing voter for a test point x be αi. Also,
let the probability that the class label of the swing voter ψi is different from the
actual class of x be pi. For example, if there are 100 test points and ψi is the
swing voter for 20 test points, then αi=20/100 = 0.2. We denote an operation
called CL(x) to return the class label of a point or pseudopoint. Also, among
the 20 test points, if 10 have different class label than ψi, then pi = 10/20 =
0.5. It would be clear shortly that αi is related to deletion and pi is related to
splitting. Therefore, the probability that the next test instance x will not be mis-
classified because of this pseudo-point = P (ψi will not be a swing voter for x)+
P (ψi will be a swing voter for x and CL(x) = CL(ψi)) = (1−αi)+αi(1−pi) =
1− αi + αi − αipi = 1− αipi.
⇒ Probability that none of the next N test instances will be misclassified

because of this pseudo-point, assuming independence among the test instances
= (1− αipi)N .
⇒ Probability that one or more of the next N test instances will be misclas-

sified because of this pseudo-point (i.e., probability of error), P (Ei) = 1 − (1 −
αipi)N . The expected error of a classifier m is the weighted average of the error
probabilities of its pseudo-points, i.e.,

E(Em) =
∑
i αiP (Ei)∑

i αi
=

∑
i αi(1− (1− αipi)N)∑

i αi
=

∑
i αi∑
i αi
−

∑
i αi(1− αipi)N∑

i αi

= 1−
∑
i

αi(1− αipi)N (since
∑
i

αi = 1) (2)

According to equation 2, the expected error can be minimized if the second
term

∑
i αi(1−αipi)N can be maximized. There are two ways to maximize this

quantity: making pi=0 by splitting unlabeled micro-clusters or making αi = 0
by removing pseudo-points from the model.

Splitting unlabeled micro-clusters: If it is assumed that the test instances
are identically distributed as the training instances, then we can apply a heuristic
to reduce pi. Recall that pi is the probability that a test point (for which ψi is a
swing voter) will have a different class label than the label of the pseudo-point
ψi. Intuitively, pi would be zero if all the training instance in the corresponding
micro-cluster has the same class label as ψi. Although this is ensured for the
micro-clusters that have labeled instances, it cannot be ensured for the micro-
clusters that have unlabeled instances. Therefore, we use the classifier-predicted

labels of the unlabeled instances to determine whether an unlabeled micro-cluster
is pure or not. If it is not pure based on the predicted labels, then we split
the micro-cluster into purer micro-clusters. Thus, splitting the unlabeled micro-
clusters help to keep pi to a minimum, and reduce the expected error of the
corresponding classifier.

Deleting pseudo-points: If for some ψi, pi is too high, then the pseudo-
point has a negative effect on the overall classifier accuracy. In this case, we can
remove the pseudo-point to improve accuracy, because removal of ψi would make
αi=0. Intuitively, pi = 1-A(ψi), where A(ψi) is the accuracy of the pseudo-point
ψi. However, removal helps only if there is no cascading effect of the removal on
other pseudo-points. A cascading effect occurs if the removal of ψi increases pj
of another pseudo-point ψj . This is possible if ψj becomes the new swing voter
for a test instance x, whose original swing voter had been ψi, and the class label
of x is the same as that of ψi, but different from that of ψi. To account for this
we implemented a simple threshold (i.e. max 50%) deleted.
6 Experiments
Synthetic datasets, SYN-E and SYN-D, are standard methods for evaluating
stream mining methods. These are described in detail in [1]. SYN-E simulates
concept evolution by adding new classes into the stream as time progresses.
SYN-D simulates concept drift by changing the slope of a hyperplane over time.
The KDDCUP 99 intrusion detection dataset, KDD, is also very widely used in
stream mining literature, see [1]. It contains 23 different classes, 22 of which are
labeled network attacks. The NASA Aviation Safety Reporting System database,
ASRS, is our second real dataset. The dataset contains around 150,000 text
reports, each describing some kind of flight anomaly. See [13] for more details.
6.1 Experimental setup
Hardware and software: We implement the algorithms in Java. We use a windows-
XP based Intel P-IV machine 3GHz processor and 2GB main memory.
Parameter settings: We will refer to our technique as LabelStream. parameter
settings of LabelStream are as follows, unless mentioned otherwise: K (number
of macro-clusters) = 50; Chunk-size = 1,600 records for real datasets, and 1,000
records for synthetic datasets; L (ensemble size) = 6;
Baseline method: We compare our algorithm with that of Masud et al [7] and
Aggarwal et al [1]. We will refer to these approaches as SmSCluster and On-
DemandStream, respectively. We run our own implementation of both these
baseline techniques. For the SmSCluster, we use the following parameter set-
tings: K (number of micro-clusters) = same as K of LabelStream; Chunk-size
= same as the chunk-size of LabelStream; L (ensemble size) = same as the
ensemble-size of LabelStream; ρ (injection propability) = 0.75, as suggested by
[7]; Q (nearest neighbors in K-NN classification) = 1, as suggested by [7]. For
OnDemandStream, we use the following parameter settings: Buffer-size = same
as the chunk-size of LabelStream; Stream speed = 80 for real dataset and 200
for synthetic dataset (as suggested by the authors). Other parameters of OnDe-
mandStream are set to the default values.

In the following subsections, we would use the terms “P% labeled” to mean
that P% of the instances in a chunk are labeled. So, when we mention that

LabelStream is run with 10% labeled data and OnDemandStream is run with
100% labeled data, it means for the same chunk-size (e.g. 1000), LabelStream
is trained with a chunk having 100 labeled and 900 unlabeled instances, whereas
OnDemandStream is trained with the same chunk having 1000 (all) labeled in-
stances.
6.2 Performance study
To illustrate the effectiveness of the proposed approach, table 1 shows over-
all accuracy values for previous approaches SmSCluster and OnDemandStream
against LabelStream against all four datasets. There are two methods to decide
labeled training instances: bias and random. Under bias sampling, a point from
a class is drawn at random and a labeled set is initialized with that point. Then
the nearest neighbor to the labeled set belonging to the same class is added to
the labeled set. This continues until P% of the points have been drawn for that
class. This is done for each class. In random sampling, points are randomly drawn
at uniform to be marked as labeled datapoints. The experiment is repeated 20
times and the accuracy value is averaged. SmSCluster and OnDemandStream
are run with 10% and 100% labeled data, respectively. LabelStream values are at
both 10% randomly drawn data and a special dataset containing biased labeled
data. LabelStream performs better than SmSCluster and OnDemandStream in
general. For example, table 1 shows under biased and random sampling Label-
Stream has a 48.9% and 41.07% accuracy, respectively, on the ASRS dataset
while SmSCluster has a 30.33% accuracy and OnDemandStream has a 28% ac-
curacy.

LabelStream SmSCluster OnDemandStream
Bias Random

SYN-E 99.76 98.35 90.28 69.78
SYN-D 84.48 86.40 75.15 73.25
KDD 97.69 98.06 92.57 96.07
ASRS 48.30 41.07 30.33 28.02

Table 1. Performance comparison of SmSCluster and LabelStream at 10% labeled
data and OnDemandStream at 100% labeled data.

LabelStream seems to outperform SmSCluster and OnDemandStream in
terms of classification accuracy. Now, we will investigate the difference in pro-
cessing speed among these algorithms. Table 2 shows a comparison of running
times of the three methods across all four datasets. LabelStream and SmSClus-
ter were run with 10% labeled data and OnDemandStream was run with 100%
labeled data as in the previous graphs in this section. Results are given in two
columns, training and testing times, for each algorithm with the addition of
times for the amount of manual annotation needed for each dataset, 60 seconds
per instance. These times are just used to illustrate the true gain of LabelStream
and SmSCluster over previous approaches as true labeling time is likely much
higher. Also, synthetic datasets do not get annotation times because they were
machine generated. Times listed are processing times, in seconds, for each data
chunk. For example, a chunk containing 1600 data points may take 60.3 sec-
onds to train on LabelStream, 16.17 seconds on SmSCluster, and 613.6 seconds
on OnDemandStream. Testing takes 24.5 seconds for LabelStream, 41.9 seconds

for SmSCluster, and 446.8 seconds for OnDemandStream. The machine training
time is always insignificant compared to the manual annotation time.

LabelStream SmSCluster Manual OnDemandStream Manual
Train Test Train Test 10% Train Test 100%

SYN-E 1.1 1.33 1.49 3.0 - 1.15 10.22 -
SYN-D 0.47 0.49 0.66 0.59 - 0.27 7.49 -
KDD 13.2 0.93 7.30 7.39 9600 1.23 20.03 96000
ASRS 60.3 24.5 16.17 41.9 9493.7 613.6 446.8 94936.7

Table 2. Testing, training, and manual labeling speeds for the four datasets.
References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for on-demand clas-
sification of evolving data streams. IEEE Transactions on Knowledge and Data
Engineering 18(5) (2006) 577–589

2. Chen, S., Wang, H., Zhou, S., Yu, P.: Stop chasing trends: Discovering high order
models in evolving data. In: Proc. ICDE. (2008) 923–932

3. Fan, W.: Systematic data selection to mine concept-drifting data streams. In:
Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), Seattle, WA, USA (2004) 128–137

4. Scholz, M., Klinkenberg., R.: An ensemble classifier for drifting concepts. In:
Proc. Second International Workshop on Knowledge Discovery in Data Streams
(IWKDDS), Porto, Portugal (Oct 2005) 53–64

5. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: Proc. ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, Washington, DC, USA, Aug, ACM (2003)
226–235

6. Yang, Y., Wu, X., Zhu, X.: Combining proactive and reactive predictions for data
streams. In: Proc. KDD. (2005) 710–715

7. Masud, M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: A practical approach
to classify evolving data streams: Training with limited amount of labeled data.
In: Proc. International Conference on Data Mining (ICDM), Pisa, Italy (Dec 15-19
2008) 929–934

8. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), Boston, MA, USA, ACM Press (2000) 71–80

9. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proc. seventh ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD), San Francisco, CA, USA (Aug 2001) 97–106

10. Gao, J., Fan, W., Han., J.: On appropriate assumptions to mine data streams. In:
Proc. Seventh IEEE International Conference on Data Mining (ICDM), Omaha,
NE, USA (Oct 2007) 143–152

11. Kolter, J., Maloof., M.: Using additive expert ensembles to cope with concept drift.
In: Proc. International Conference on Machine Learning (ICML), Bonn, Germany
(Aug 2005) 449–456

12. Bengio, Y., Delalleau, O., Le Roux, N.: Label propagation and quadratic criterion.
In Chapelle, O., Schölkopf, B., Zien, A., eds.: Semi-Supervised Learning. MIT
Press (2006) 193–216

13. Woolam, C., Khan, L.: Multi-label large margin hierarchical perceptron. IJDMMM
1(1) (2008) 5–22

